13 research outputs found

    Inter Partes Review: A Multi-Method Comparison for Challenging Patent Validity

    Get PDF

    Retinal Architecture in ​\u3cem\u3eRGS9-\u3c/em\u3e and ​\u3cem\u3eR9AP\u3c/em\u3e-Associated Retinal Dysfunction (Bradyopsia)

    Get PDF
    Purpose To characterize photoreceptor structure and mosaic integrity in subjects with RGS9- and R9AP-associated retinal dysfunction (bradyopsia) and compare to previous observations in other cone dysfunction disorders such as oligocone trichromacy. Design Observational case series. Methods setting: Moorfields Eye Hospital (United Kingdom) and Medical College Wisconsin (USA). study population: Six eyes of 3 subjects with disease-causing variants in RGS9 or R9AP. main outcome measures: Detailed retinal imaging using spectral-domain optical coherence tomography and confocal adaptive-optics scanning light ophthalmoscopy. Results Cone density at 100 ÎĽm from foveal center ranged from 123 132 cones/mm2to 140 013 cones/mm2. Cone density ranged from 30 573 to 34 876 cones/mm2 by 600 ÎĽm from center and from 15 987 to 16,253 cones/mm2 by 1400 ÎĽm from center, in keeping with data from normal subjects. Adaptive-optics imaging identified a small, focal hyporeflective lesion at the foveal center in both eyes of the subject with RGS9-associated disease, corresponding to a discrete outer retinal defect also observed on spectral-domain optical coherence tomography; however, the photoreceptor mosaic remained intact at all other observed eccentricities. Conclusions Bradyopsia and oligocone trichromacy share common clinical symptoms and cannot be discerned on standard clinical findings alone. Adaptive-optics imaging previously demonstrated a sparse mosaic of normal wave-guiding cones remaining at the fovea, with no visible structure outside the central fovea in oligocone trichromacy. In contrast, the subjects presented in this study with molecularly confirmed bradyopsia had a relatively intact and structurally normal photoreceptor mosaic, allowing the distinction between these disorders based on the cellular phenotype and suggesting different pathomechanisms

    Spatial and temporal characteristics of error-related activity in the human brain

    Get PDF
    A number of studies have focused on the role of specific brain regions, such as the dorsal anterior cingulate cortex during trials on which participants make errors, whereas others have implicated a host of more widely distributed regions in the human brain. Previous work has proposed that there are multiple cognitive control networks, raising the question of whether error-related activity can be found in each of these networks. Thus, to examine error-related activity broadly, we conducted a meta-analysis consisting of 12 tasks that included both error and correct trials. These tasks varied by stimulus input (visual, auditory), response output (button press, speech), stimulus category (words, pictures), and task type (e.g., recognition memory, mental rotation). We identified 41 brain regions that showed a differential fMRI BOLD response to error and correct trials across a majority of tasks. These regions displayed three unique response profiles: (1) fast, (2) prolonged, and (3) a delayed response to errors, as well as a more canonical response to correct trials. These regions were found mostly in several control networks, each network predominantly displaying one response profile. The one exception to this “one network, one response profile” observation is the frontoparietal network, which showed prolonged response profiles (all in the right hemisphere), and fast profiles (all but one in the left hemisphere). We suggest that, in the place of a single localized error mechanism, these findings point to a large-scale set of error-related regions across multiple systems that likely subserve different function

    Developmental changes in the organization of functional connections between the basal ganglia and cerebral cortex

    Get PDF
    The basal ganglia (BG) comprise a set of subcortical nuclei with sensorimotor, cognitive, and limbic subdivisions, indicative of functional organization. BG dysfunction in several developmental disorders suggests the importance of the healthy maturation of these structures. However, few studies have investigated the development of BG functional organization. Using resting-state functional connectivity MRI (rs-fcMRI), we compared human child and adult functional connectivity of the BG with rs-fcMRI-defined cortical systems. Because children move more than adults, customized preprocessing, including volume censoring, was used to minimize motion-induced rsfcMRI artifact. Our results demonstrated functional organization in the adult BG consistent with subdivisions previously identified in anatomical tracing studies. Group comparisons revealed a developmental shift in bilateral posterior putamen/pallidum clusters from preferential connectivity with the somatomotor “face” system in childhood to preferential connectivity with control/attention systems (frontoparietal, ventral attention) in adulthood. This shift was due to a decline in the functional connectivity of these clusters with the somatomotor face system over development, and no change with control/attention systems. Applying multivariate pattern analysis, we were able to reliably classify individuals as children or adults based on BG–cortical system functional connectivity. Interrogation of the features driving this classification revealed, in addition to the somatomotor face system, contributions by the orbitofrontal, auditory, and somatomotor hand systems. These results demonstrate that BG–cortical functional connectivity evolves over development, and may lend insight into developmental disorders that involve BG dysfunction, particularly those involving motor systems (e.g., Tourette syndrome)

    Developmental Changes in the Organization of Functional Connections between the Basal Ganglia and Cerebral Cortex

    Get PDF
    The basal ganglia (BG) comprise a set of subcortical nuclei with sensorimotor, cognitive, and limbic subdivisions, indicative of functional organization. BG dysfunction in several developmental disorders suggests the importance of the healthy maturation of these structures. However, few studies have investigated the development of BG functional organization. Using resting-state functional connectivity MRI (rs-fcMRI), we compared human child and adult functional connectivity of the BG with rs-fcMRI-defined cortical systems. Because children move more than adults, customized preprocessing, including volume censoring, was used to minimize motion-induced rsfcMRI artifact. Our results demonstrated functional organization in the adult BG consistent with subdivisions previously identified in anatomical tracing studies. Group comparisons revealed a developmental shift in bilateral posterior putamen/pallidum clusters from preferential connectivity with the somatomotor “face” system in childhood to preferential connectivity with control/attention systems (frontoparietal, ventral attention) in adulthood. This shift was due to a decline in the functional connectivity of these clusters with the somatomotor face system over development, and no change with control/attention systems. Applying multivariate pattern analysis, we were able to reliably classify individuals as children or adults based on BG–cortical system functional connectivity. Interrogation of the features driving this classification revealed, in addition to the somatomotor face system, contributions by the orbitofrontal, auditory, and somatomotor hand systems. These results demonstrate that BG–cortical functional connectivity evolves over development, and may lend insight into developmental disorders that involve BG dysfunction, particularly those involving motor systems (e.g., Tourette syndrome)

    Integrity of the Cone Photoreceptor Mosaic in Oligocone Trichromacy

    No full text
    Oligocone trichromacy (OT) is an unusual cone dysfunction syndrome associated with normal or near-normal color vision. In this paper, the authors describe novel observations on the underlying structural basis of OT at the level of the cone mosaic
    corecore